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TU ACCURACY OF TH suD8TrI!u-m om APPROACH FOR

DETERMINING THE BND3IG FREJENCIES OF

MULTISTRINGER BOX BEAMS

By William W. Davenport

SUMMARYIThe accuracy of the substitute-stringer approach for including the
effects of shear lag in the calculation of the transverse modes and fre-
quencies of multistringer box beams is investigated. Box beams, the covers
of which consist of normal-stress-carrying stringers on sheets which carry
not only shear but also normal stress, are analyzed exactly. Frequencies
of beams with various numbers of stringers, obtained by means of this
exact analysis, serve to determine the possible accuracy of the frequencies

* tobtained by the substitute-stringer approach.

INTRODUCTION

The use of a substitute-stringer approach for including the effects
of shear lag in the vibrational analysis of built-up box beams was inves-
tigated in reference 1. Various thin-walled rectangular tubes were ideal-
ized to substitute-stringer structures and the frequencies of the first
few bending modes of the idealized structures were compared with those
of the original beams. The results indicated where the substitute stringer
should be located in order to take into account accumately the effect of
shear lag on the frequency; for a fairly wide variety of tube proportions,
locating the substitute stringer midway between the web and the centroid
of the half-cover yielded frequencies accurate within 1 or 2 percent for
higher as well as lower modes of vibration. However, because the rec-
tangular tubes employed in the investigation had constant wall thickness
there was no definite information given regarding the accuracy of fre-
quencies that may be obtained for a beam which has discrete flanges and
stringers in the covers and different web and cover-sheet thickness.

The purpose of this report is to examine the accuracy of the
substitute-stringer approach when applied to a beam more nearly repre-
sentative of actual built-up box beams. Frequencies of various realistic
multistringer beams of the type shown in figure I(a) are deter-ined by
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means of the substitute-stringer approach as given in reference 1. These
frequencies are then compared with the frequencies obtained by means of
an exact vibrational analysis of a multistringer beam. Conclusions are
thereby made with regard to the proper location of the substitute stringer.

SYMBOLS

A total cross-sectional area of stringers in a half-cover of
multistringer box beam

AF cross-sectional area of flange of substitute-stringer structure

AL cross-sectional area of a substitute stringer

A0  cross-sectional area of flange of multistringer box beam

Ap cross-sectional area of pth stringer of multistringer box beam

AS  effective shear-carrying area

a half-depth of beam

b half-width of beam

bo= a

bp width of pth panel

br+l half-width of middle panel when. N is even, nonzero constant
when N is odd

bS  distance between web and adjacent substitute stringer

bC distance between web and centroid of area of half-cover

Bi ( q )  parameter defined by equation (A17) or equation (A4O)

C constant

C ( q )  parameter defined by equation (A18) or equation (AMl)

Di (q) paramter defined by equation (A25) or equation (A2)
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E modulus of elasticity

Fq~Ekq..bq

F /GtcL2(l + ON8(r+l),q)

G shear modulus of elasticity (taken equal to E/2.65 herein)

1 H =tca

I bending moment of inertia

Kij(q) = pq2(_) (l + 6o. ) + (J,)

kB frequency coefficient, o

ks coefficient of shear rigidity, L qGAs

ki =t(g)2 _ kBkS

L half-length of beam

N number of stringers in a cover

(P) parameter defined by equations (A34) and (A35) or by equa-
tions (A43) and (A44)

Pq G

(jq) q2 Q~) + Elq

r (+ O)

~A
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Si (p )  determinant given by equation (A30)

t C  cover-sheet thickness

tC ' effective cover-sheet thickness for normal stress

tW web thickness

T maximum kinetic energy

U maximum strain energy

up longitudinal displacement of a point on the pth panel

w vertical displacement of cross section of beam

x longitudinal coordinate

yp chordwise coordinate for pth panel

amn(P),cm Fourier series coefficients

i,j,p,q,m,n integers

q = b

2GtcL

5ij Kronecker delta (0 when i j J; 1 when i= J)

ON = 1 [l -1)1]

Ni ( p )  Lagrangian multiplier

Lmass of beam per unit length

01 ( p )  parameter defined by equation (A8)

w natural frequency

(De natural frequency of multistringer beam in figure 3
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THE MULTI INGER BOX BEAM A D 8 5 UJ1 8

A doubly symmetrical multistringer box beam of the type considered
in the present paper is shown in figure l(a). In order that the covers
of this structure may behave realistically with regard to shear-leg
effects, the cover sheets are permitted to carry not only shear but also
normal stress. The following simplifying assumptions are made:

(i) The flanges and stringers carry only normal stress.

(2) The webs carry only shear (the bending resistance of the web
is included in the flanges).

(3) Longitudinal inertia (rotary inertia) is neglected.

(4) The cross sections maintain their shape.

Assumptions (2) and (3) are generally known to be good for reasonaby
shallow beams such as those considered in this report; assumption (4)
is good if a normal amount of bulkhead stiffness is present.

In the appendix an exact vibration analysis, similar to those of
references 1 and 2, is carried out for a multistringer beam of the type
shown in figure l(a). The Rayleigh-Ritz energy procedure is used in
conjunction with appropriate Fourier series and LIagrangian multipliers
to obtain frequency equations for a box beam with any number of stringers.
Although the analysis in the appendix allows unequal spacing of the
stringers, only the case of equally spaced stringers is considered
hereinafter.

The substitute-stringer structure for the beam of figure 1(a) in
shown in figure l(b). The flange-web combination of this structure is
the same as that of its prototype; the covers, however, consist of sub-
stitute stringers whith carry only normal stress and sheets which carry
only shear. The magnitude of the shear-lag effect in this structure
depends on the location of the substitute stringers. A suggested stringer
location given in reference I is

b - 0.(1C

where bs  is the distance between a flange and the adjacent substitute
stringer and bc is the distance between a web and the centroid of

normal-stress-carrying area of the half-cover.

A vibration analysis of the substitute-stringer structure is carried
out in appendix B of reference 1.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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OOWARMI0CF OFRSVW33B AS OBT~fUM BY MMIM

SOUTION AND TO BUIBS UT'-8RIR APPROACH

In order to investigate the possible accuracy of the substitute-
stringer approach for determining the frequencies of multistringer box
beams, comparisons are made between the frequencies of four multistringer
box beams as obtained by the analysis given in the appendix and the corre-
sponding frequencies of their substitute-stringer structures as obtained
by the analysis given in reference 1. The first three symetrical trans-
verse modes of each beam with free-free end conditions are considered.

The four beams have cross sections as shown in figure 2 and are
identical except for the manner in which the total stringer area is
distributed. Proportions conon to all four beams are

1! - 6.o0 6.0 W = 1.25 A = 1.89 A = 0.75b a to atW bt

where L, b, a, tW, and tC are, respectively, the half-length, the
half-width, the half-depth, the web thickness, and the cover-sheet thick-
ness; the total cross-sectional area of the stringers in a half-cover is
given by A and the cross-sectional area of a flange is given by A0 .
In addition to the preceding properties, the four beams are alike in that
stringers of each beam are equally spaced across the covers. The beams
thus differ only in the number of stringers on a cover; the cases con-
sidered are for N = 1, 4, 7, and ®.

In figure 2 the various relations needed to obtain the parameters
of the multistringer solution for the four beams are given. When N is
infinite the stringers are smeared out to a "stringer sheet" for which
the effective normal-stress-carrying thickness t C ' is different from
the actual cover-sheet thickness t c .

The cross section of the substitute-stringer idealization is also
shown in figure 2. In accordance with the idealizing procedure of the
substitute-stringer approach, the following relations are used to deter-
mine the parameters needed in the substitute-stringer solution of refer-
ence 1:

AF n A0 AL - A + b

where AF  and AL are, respectively, the cross-sectional area of a
flange and stringer of the substitute-stringer beam. It should be noted
that the only geometric property of the substitute-strine r structure
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which may be different for each of the four bea is the value of bS.
For the substitute-stringer location defined by equation (1), b S varies
by virtue of the variation of bC. h values of bC for the four beams
are:

For 1 stringer,

bC - 0.74b

For 4 stringers,

bC - O.543b

For 7 stringers,

bC = 0.531b

For infinity stringers,

bc = 0.500b

The frequency coefficients kB = EJ i obtained from both the

substitute-stringer solution where bs = O.5bC and the multistringer

solution for each of the four beams are given in table I. In addition
to these results, the frequency coefficients obtained by a solution
which includes transverse shear but not shear lag have been included.
This latter set has been presented in order to demonstrate the influence
of shear lag and was obtained from equation (i) of reference 3 with the
rotary inertia parameter kRI equal to zero.

The influence of stringer location on the frequency w of the
substitute-stringer structure for each of the four beats is presented
graphically in figure*3. The frequency is given in the form of its

relative error -W-- 1 when compared with the exact frequency we  ofWe

the multistringer structure; the curves indicate how the errors vary
with substitute-stringer location.

DISCUSSION OF RESJLTS

The results given in table I show good agreement between the fre-
quency coefficients as obtained by the substitute-stringer approach with
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bS/bC - 0.5 and those obtained by the multistringer solution. However,

as may be noted, the frequency coefficients for the substitute structure
with bS/bC - 0.5 are slightly high for all but the third modes of the

cases for N - 1 and N - w. Reference to figure 3 indicates that, for
all but the case of N - co, the maximum errors for the modes considered

would be reduced by using a value of bS/bC = 0.55; for example, for the

case of N = 7, the maximum error for this new value would be less than
I percent.

The results of table I indicate that the stringer area distribution
has little influence on the frequency; however, the assumption should

not be made that the influence of shear lag is negligible. As may be
seen in table I, the reduction in frequency due to the inclusion of shear-

lag effects is 4.8, 16.7, and 19.1 percent, respectively, for the first
three symmetrical modes of the case where N = 7.

CONCIUDING RDWW

The numerical results of the present paper indicate that the
substitute-stringer approach can yield accurate frequencies for multi-
stringer box beams. Review of the numerical results of NACA Technical
Note 3158 together with those of the present paper suggests that a
value of 0.55 for bs/bC (ratio of the distance between web and adjacent

substitute stringer to distance between web and centroid of the area of
the half-cover) defines a slightly more appropriate substitute-stringer
location for built-up box beams than bS/bC = 0.50, the value suggested

in NACA Technical Note 3158.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., January 6, 1956.
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APPIWX

VIBRATION SOUTION OF A MJLTISfINGER BOX BEAM

The simplifying assumptions for the multistringer beam are given
in the body of the paper and a cross section consisting of two cases is
shown in figure 4. Case I applies when N is even and case II when
N is odd, where N is the number of stringers in a cover. In addition
to the dimensions and coordinates defined by figure 4, the length of the
beam is assigned the value 2L, and x is defined as the longitudinal
coordinate with its origin at the midpoint of the beam. It should be
noted that br+l, the distance between the rth stringer and the center
line for case I, is half the width of the middle panel.

For a transverse mode of vibration let w(x) be the amplitude of

a vertical displacement of a cross section and let up(xyp) be the

amplitude of a longitudinal displacement of a point on the pth panel.
Then the maximum strain energy is

-r+l A -l A.. 2

U=2E-iIl + ON(r+l),p f.L(x) +

2tr+l 
L b Ipx

CEtK (jI- - 8N(r+l)Pj Lff ( Xyp) )2 dy +

20 pr+l (1- i(r+l),p) -L J UP(X"yp) dp dx+

2GatW f dx (A)_L dx a

where

e = 1- (-)N (A2)
2

and

5(r+l), p = 0 (p r + 1) (A3)

8 (r+l),(r+l) " 1
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The maximum kinetic energy when the influence of longitudinal inertia
is neglected is

T=1Pa2fLw2dx(i~2 -L

where V is the mass per unit length of the structure which the multi-
stringer beam represents. It should be noted that equations (Al) to (A)
hold for N> 0.

In the following sections appropriate infinite trigonometric series
are assumed to represent the displacements and then the Rayleigh-Ritz
energy procedure is applied.

Symmetrical Transverse Modes of a Free-Free Multistringer Beam

Appropriate trigonometric series for the symmetrical transverse
modes of a free-free beam are

l__rp

Up(X,Yp) = 2L mn(P)sin 2 cos bp
m=l,3,5 n=O,l,2

(p = 1,2, • • . (r + 1)) (A5)

w(x) = C + cm cos mgx (A6)
2L

The choice of these particular series was guided by the orthogonality
required for simplification of the expressions in the strain-energy
equation; C in equation (A6) is introduced in order to allow w(tL)
to be unrestricted.

Because of the geometry of the structure the following restraining

relations must hold:

up(xbp) - up+l(x,O) = 0 (p = 1,2, . . . r) (A7)

Substituting equation (A5) into equation (A7), multiplying by sin

where i = 1,3,5, • • • , and integrating from -L to L yields

Sa(P)('l)n ain (P+l] =0i(P) =0

n-0.,1,2

(p~l2 r(m,,,... (A8)



NACA TN 3636 ii

In accordance with the Rayleigh-Ritz procedure the expression

U - T- 5 M- O M)m p  (Ag)

p=l,2 mal,3,5

is held stationary with respect to the coefficients of the assumed series.
The ' 's in expression (A9) are Lagrangian multipliers introduced to
maintain the condition stated in (A8). The expressions for U and T
of equation (A) are given by equations (Al) and (A), respectively, and
the displacements are in turn given by equations (A5) and (A6). Thus,

differentiating expression (A9) with respect to the ai(q),s, ci's,
and C independently and setting the respective results equal to zero
yields the following equations:

oo

K(1) (1) ~ (i) - Sin(1~j) +a H( )c f~?()(l) =
KiJ () aij 1 + 9-Ri ~l - n 1 + 2a H il ci - Pixi (1(-) 0

n=0,1,2 L (T)

(i = 1,3,5, .)(J = 0,1,2, . .) (AlO)

(1 - ON5(r+l),q)Kij (q)aij (q) + 2Ri(q) 0 ( q )

n=0,1l,2

qi (q) (-l)J(l- 5(r+l),q) - \i(q- = 0

(i =1,3,5, .)(J = 0,1,2, • . .)(q=2,3, • r + 1)(r 1) (All)

i-i
kici + (Z0l 2kB2 S2(6 (-1) C - 0

a ' n=,1,2 i

(i - 1,3,5, . . .) (A12)CO -aM'
kB2 + m; **35 cm ) (-1) - 0 (A13)

where

Kij(q) P q2 () 2( + + (3)2 (Al4a)

\'.O
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2q= (A)4.b)

Pi q 2 1

F Aq-jbq (Al4d)

Fq ?(l + GNro(r1),q)

tca

k2 PwL (A114.)kB EI

kS EI(A14g)

AS 4 atW (1h

2GtCL

ki 2_ kB~kS(A1Ai)

Dividing equation (A1o) by Ki()and summing over 3=012

gives, on solving for aj(].)

J-0,1,.2

J-0)1,2

(1 1,3,5, *A 5
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Similarly, for equation (All):

~j (q) = j(q)~q (q)( ( (rl q ) (~) q-1)

J=0,1,2

(i= 1,3,5, . . .)(q = 2,3, r + 1) (A16)

where

(-1)
Bi(q) _ .=0, 1,2 KiJT (q = 1,2, . . . r) (A17)

1 + 2Ri 
( q ) 1

J=01,l12 Kij
()

and

(q) _ _ _ _ _ _ _ _

Ci = J0,1,2 Kjj

(1- eB(r+l),) + 2 () j ,2 1

(q =1,2, . . .r+ ) (A18)

In equation (A17) the definition of Bi(r+l) has been neglected because

when q = r + 1 in equation (A16) the entire term containing Bi(r+l)

drops out.

By substituting equations (A15) and (A16) into equations (AlO)
and (All) the following equations may be obtained:

=i i C 12a~' {x.~)(. [2R, ci W) ] + 017,(l) [LiJ3 - 2Ri(')Bi('])}
Kij (1) H 1 ,2

(i 1,O,5, . )j=o',, ) (A',9)
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(i . 1,3,5, • .)(J Ol,2, . . .)(q.-2,3, . . . r) (A2o)

Equations (Al9) and (A20), when multiplied by (-i)J and summed over
j = 0,1,2, . . ., yield

(l)Jaij(1) -Bi(')(2aHt ci + O 1i(1) + Di(j i(')
J=0,11,2 I

(i = 1,3,5, (A21)

and

, 2 (-1)Jaij(q) = qpi (q) i)+ Aq jCi(q) + Di(qj ji(q )

(i = ,, . .)(q = 2,3, . . • r) (A22)

In order to obtain equations in the form of (A21) and (A22) it should be
noted that

(qq)

(q= 1,2,3, . . .r) (A23)

and

I fl 2Ri ()Bj q q]~ =Cj q + Dj q
1(q) 1 i(q)~) a

=0,1,2 j -j ,2--

(q 1,2,3, . . . r) (A24)
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where

D (q) 2 - 2  ,J7
I + 2Ri (q)  I (q)

j j,2

(q = 1,2,3, . . . r) (A25)

Substituting equation (A15) into equation (A12) results in

ji,2C 1 i-I/ix 2.2 (2 o (_?=\ (- x 1) Yi-
[ki - 2H ) ci') +i Lt = 2kB kS2i) (lf -

(i = 1,3,5, . . . A6)

and substituting equations (A21) and (Ai6) into equation (A8), when
p = 1, gives

b c (() b9 B(2 j (()

b-T i(2)?\(2)(l - 5(r+l),2) = 0

(i - l,3,5, • . (A27)

Substituting equations (A16) and (A22) into equation (A8) yields

-Bi (P)i(P'1) + (P) + Di(P) +bp+lci(P+ Ni(P)

bp b

(i- ,3,5, • • •)(p -2,, . . . r) (A28)

By Cramer's rule, equations (A26) to (A28) may be solved for el/Al

in terms of C/p 1 ; if in the resulting expression the determinants in

t ______________________________________________
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4) 0

.74 U-\

r4$ +

4) I

to
UfS -H '

Ea.

W ~ .H . .I

ro I -4

0% 'a4 cv -V'40

4). N r4

0+

2~ cluI

0

to

$4-) i

0) S
-H ta

~ it
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By expanding the determinant of (AO) by the first column the followingrecurrence relation may be obtained:

( (p) + + bB (PI (l 2 )
! Si)= i ( ) + Di ( ) +  Ci ( +  Si( ) (p+

(p = 1,2,3, . . . r- ) (A31)

where

si(r) _ (r) + Di(r) + br+i (r+J

and

si(r+l) =

Now, by dividing the numerator and denominator of the right-hand member

of equation (A29) by Si ( l) and then using equation (A31), the following
equation results:

i-i

Ci = [ k, 2kB ks2  (f ) (-I ) c j 2

2 (1)L2C(' (1) b2(21 S(2) b2 (2)) 2 (3)

(i 1 ,3,5, . •.) (A32)

Repetition of this procedure ultimately yields the continued fraction
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-r-

4 -4

4.4
I.+

U 0 -. H

++

-4 +

+0 P +

L) -r4

r4 r -4+

+~ 0 r

+5I *~

L~J + C.

HI, tv

ewI
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permits equation (A33) to be written as

i-i
2 2/, ) 2

c =2k2i = 1,3,5, • . (A36)

l-(A(1)

Nj 1

Substituting equation (A36) into equation (AI3) yields the frequency
equation

k2 f1+ 2 2 _______ _ =20 (A37)

kB l+2kkS ~ 1Nm ]
m~l, 3,5 2 (ml

(p)
The following closed forms for the summations involved in Bm  ,

C(p) m(p)

CM , and D ) may be obtained by methods similar to those given in
reference 4:

1 (p = 1,2,.. .r + i1) (A38)

{:y-1 (p =l1,21 r + 1r~) (A39)
j0=,., 2 -2(m~)Pp sinh

By use of equations (A38) and (A39), equations (Aly), (A18), and (A25)

may now be written as

Bm(P) sech (-f)Pp (

2 )p tanh ( +\p (p =,2,.. .r) (iO)

C(p) = 1p

-2l - 1e (r+l) jp)(M2)PP tanh fi + R

(p 1,2., r + 1) (A41)
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(p) tan F fP1
2.() - %

(p- 1,2,, . . . r) (9A2)

From equations (A34), (A35), (A40), (A41), and (A42) the following expres-

(p) adN(r~lsions for Nm and Nm r +i) may be obtained:

(p) .bp_,.tm (p) sech2 .(mKp
NM bl )Pp tanh (g)Pp + Rm + t e ( )Pp ]

(p = 1,2,. . . r)(bo a) (A43)

br+l[ - ON) tanh + m r +

(rNm 1) (b)

The rate of convergence of the series of frequency equations given
in equation (A37) is increased by substracting the expression

.,f~ m 5 2 k

and adding the equivalent closed-fonm expression

ktan kkS

The resulting equation is

kB2Ftan IC~kS + 2kB3kS3 jt 2 1 0 (AM5)

L mml,3,5 ~2 Nm~l
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where N 1 ) is determined by equations (AW) and (Ah4). It should be

noted that equation (A45) will hold for N stringers where N 0 0.

For the case when N - 0, handling equations (A12), (A13), and (AlO)

when i ( ) = 0 in a manner similar to that used for the case of

N stringers yields equation (A45) except that

am tanh ltw + Pi ] (AME)

The values P1 and Ri(l) are given in equations (A4b) and (Al4c),

respectively; the value of b, is, of course, b.

In order that equation (A45) togeth6r with (A46) may apply to the
case for N = , P1 may be redefined by

EbC (7)
Pi = GL2tC

Antisymmetrical Transverse Modes of a Free-Free Multistringer Beam

Appropriate trigoncmetric series for the antisymmetrical transverse
modes of a free-free beam are

= a~(p) mco co
Up (x,yp) Cos Cos

m-O,2I4 n-0,,l,.2 2L bp

(p - ,2, . . .r+l) (A8)

W(x) = CX + cm sin - (A49)
6 2L

As in the case for the symmetrical modes the choice of the particular
series was guided by the orthogonality required for simplification of
the expressions in the strain-energy equation; the term Cx was added

* in order to allow sufficient freedom of w(tL).
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Treatment similar to that accorded the case of the symmetrical modes
yields the equation

k 2 - kkS ot kkS +2kB4 1%4 0(A50)B B m2,4,6 k. . -k /

where kB, k.S, and m are given in equations (Alif), (AlIg), and (AlJ),

respectively, and N,(1) is given by equations (A43) and (Ai4). As

before, this equation holds for N stringers, where N 0. When N - 0,

equation (A50) may be used, where NIm ( ) is defined by (A46); for N =

the same equations are used with the definition of P1  as given in
equation (A47) •
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TABLR I

EFF T CF STRIMG DISIBUTION ON FRBWTh2Y

Case Solution
1st symm. 2d symm. 3d syi.

mode mode mode

Elementary
N = I + 5.42 24.5 48.3

transverse shear

Substitute- 5.16 20.1 37.8
stringer, bs/bC - 0.5

Multistringer 5.07 19.7 38.1

Elementary
N 4 + 5.42 24.5 48.3

transverse shear

Substitute- 5.22 2o.8 39.1
* stringer, bS/bC = 0.5

Multistringer 5.15 20.2 38.8

Elementary
N= 7 + 5.42 24.5 48.3

transverse shear

I ** Substitute-
,,ustie b C = 0.5 5.22 20.9 39.2

Multistringer 5.16 20.4 39.1

Elementary
N = + 5.42 24.5 48.3

transverse shear

Substitute- 5.23 21.0 39.5
stringer, bS/bC = 0.5

Multistringer 5.19 20.8 39.9
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- (a) Multistringer box beam.

* (b) Substitute-stringer structure.

Figure l.- Multistringer box beam and its substitute-stringer structure.
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(b) Substitute-stringer beam.

Figure 2.- Cross sections of multistringer beams and substitute-stringer
beam.
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Figure 3.- Effect of substitute-stringer location on the accuracy of the
substitute-stringer approach for box beam with different stringer
distributions. The labels 1S, 2S, and 38 denote symmetrical modes.
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